Nutrient Dynamics in Acid Sulfate Soil Treated with Dolomite and Micronutrient Fertilizers and Their Effects on the Growth of Lowland Rice
Abstract
The development of acid sulfate soils for agriculture is limited by high soil acidity, high soluble Fe, and low available P, base cation, and micronutrient contents. Therefore, the application of dolomite and micronutrient fertilizer is required to improve soil and rice productivity. This study aimed to determine the effect of dolomite and Cu and Zn fertilizer on the dynamics of nutrient availability in acid sulfate soils and their effect on the growth, nutrient uptake, and yield of rice. The study was conducted in a greenhouse and arranged in a completely randomized design with 13 treatments and 5 replications. The application of various doses of micronutrient fertilizer containing Cu and Zn oxide was compared with the control and dolomite application treatments. NPK as a basal fertilizer was applied according to the recommended dose for all treatments. The results showed that the application of micronutrient fertilizer and 3 tons ha-1 dolomite effectively increased the availability of P nutrient from 13.5 to 58.3 pp and decreased the potential for iron toxicity. Furthermore, applying 6 tons ha-1 dolomite, combined with 2 tons ha-1 organic fertilizer, and 6 ml l-1 micronutrient fertilizer resulted in the highest grain yield of 91.65 g pot-1 with an increase of 19%. Meanwhile, the application of 3 tons ha-1 dolomite and a combination of 3 tons ha-1 dolomite + 2 tons ha-1 organic matter could reduce 20-30% of iron uptake by plant roots. Application of dolomite and micronutrient fertilizers increases the productivity of soil and rice on acid sulfate soils.
Keywords: acid sulfate soil; dolomite; micronutrient fertilizer; rice; nutrient dynamics
DOI:10.62321/issn.1000-1298.2023.11.03
Download Full Text:
PDFReferences
RITUNG S, SURYANI E, SUBARDJA D, et al. Resources. Indonesian agricultural land: size, distribution, and potential availability. In: HUSEN. (ed.) Body research and research development. Jakarta: Indonesian Agency for Agricultural Research and Development Press, 2015.
BALAI BESAR PENELITIAN DAN PENGEMBANGAN SUMBERDAYA LAHAN PERTANIAN. Sumberdaya lahan pertanian Indonesia: luas, penyebaran dan potensi ketersedian. Bogor, 2014.
SHAMSHUDDIN J, PANHWAR Q A, SHAZANA M A R S, et al. Improving the productivity of acid sulphate soils for rice cultivation using dolomite stone, basalt, organic fertilizer, and/or their combinations. Sains Malaysiana, 2016, 45(3), 383–392.
FANNING D S, RABENHORST M C, FITZPATRICK R W. Historical developments in the understanding of acid sulfate soils. Geoderma, 2017, 308, 191–206.
SHAMSHUDDIN J, SYARWANI M, FAUZIAH S, et al. A laboratory study on pyrite oxidation in acid sulphate soils. Communications in Soil Science and Plant Analysis, 2004, 35, 117–129.
SAHRAWAT K L. Reducing iron toxicity in lowland rice with tolerant genotypes and plant nutrition. Plant Stress, 2010, 4, 70–75.
AUDEBERT A, SAHRAWAT K L. Mechanisms for iron toxicity tolerance in lowland rice. Journal of Plant Nutrition, 2000, 23, 1877–1885.
BECKER M, ASCH F. Iron toxicity in rice-conditions and management concepts. Journal of Plant Nutrition and Soil Science, 2005, 168(4), 558–573.
AUDEBERT A. Iron toxicity in rice – environmental conditions and symptoms. In: AUDEBERT A, NARTEH L T, KIEPE P, et al. (eds.) Iron toxicity in rice-based system in West Africa. Cotonou: WARDA, 2006: 18–33.
SUSILAWATI A, ARIFIN F. Dinamika besi pada tanah sulfat masam yang ditanami padi. Jurnal Sumberdaya Lahan, 2013, 7(2), 67–75.
DOBERMAN A, FAIRHURST T. (eds.) Iron toxicity in rice: nutrient disorders and nutrient management. Manila: International Rice Research Institute, 2000.
ONYANGO D A, ENTILA F, DIDA M M, et al. Mechanistic understanding of iron toxicity tolerance in contrasting rice varieties from Africa: 1. Morpho-physiological and biochemical responses. Functional Plant Biology, 2019, 46, 93–105.
NOVIANTI V, INDRADEWI D, MARYANI, et al. Selection of local swamp rice cultivars from Kalimantan (Indonesia) tolerant to iron stress during vegetative stage. Biodeversitas, 2020, 21(12), 5650–5661.
KYUMA K. Paddy soil science. Melbourne: Kyoto University Press, Trans Pacific Press, 2004.
SALAMPAK. Peningkatan Produktivitas Tanah Gambut yang Disawahkan. Tangerang: An1mage, 2019.
ARYANI R D, NUGROHO A P, PURWESTRI Y A. Pengaruh pemberian Cu terhadap pertumbuhan, akumulasi, aktivitas superoxide dismutase (SOD) dan kandungan total fenol daun tanaman padi (Oryza sativa L. CV. Cempo Merah). Thesis S2 Biologi, Universitas Gajah Mada, 2017.
SHARMA M, KUMAR P. Biochemical alteration of mustard grown under tin contaminated soil. Plant Archives, 2020, 20(2), 3487–3492.
CHITRAMANI P K. Evaluation of antimony-induced biochemical shift in mustard. Plant Archives, 2020, 20(2), 3493–3498.
KUMARI P, KUMAR P. Trichoderma fungus in mitigation of rhizosphere arsenic: with special reference to biochemical changes. Plant Archives, 2020, 20(2), 3512–3517.
BARMAN H, DAS S K, ROY A. Zinc in soil environment for plant health and management strategy. Universal Journal of Agricultural Research, 2018, 6(5), 149–154.
ROY A, DAS S K, TRIPATHI A K, et al. Biodiversity in North East India and their conservation. Progressive Agriculture, 2015, 15(2), 182–189.
DAS S K, AVASTHE R K, SINGH S K, et al. Zinc in plant-soil system and management strategy. Agrica, 2018, 7(1), 1–6.
DUCKWORTH O W, HOLMSTROM S J M, PENA J, et al. Biogeochemistry of iron oxidation in a circumneutral freshwater habitat. Chemical Geology, 2009, 260(3–4), 149–158.
HENDRAJAT E A, RATNAWATI E, MUSTAFA A. Penentuan pengaruh kualitas tanah dan air terhadap produksi total tambak polikultur udang vaname dan ikan bandeng di Kabupaten Lamongan, Provinsi Jawa Timur melalui aplikasi analisis jalur. Ilmu dan Teknologi Kelautan Tropis, 2018, 10(1), 179–195.
VIRZELINA S, TAMPUBOLON G, NASUTION H. Kajian Status Unsur Hara Cu Dan Zn Pada Lahan Padi Sawah Irigasi Semi Teknis: Studi Kasus di Desa Sri Agung Kecamatan Batang Asam Kabupaten Tanjung Jabung Barat. Agroecotania, 2019, 2(1), 11–26.
ARSANA I G K D, YAHYA S, LONTOH A P, et al. Hubungan antara penggenangan dini dan potensial redoks, produksi etilen dan pengaruhnya terhadap pertumbuhan dan hasil padi (Oryza sativa) sistem tabela. Agronomi, 2003, 31(2), 37–41.
SETYORINI D, ABDULRACHMAN S. Pengelolaan Hara Mineral Tanaman Padi. In: Padi-Inovasi Teknologi dan Ketahanan Pangan Buku I. Sukamandi: Balai Besar Penelitian Tanaman Padi, Badan Penelitian dan Pengembangan Pertanian, 2008.
SURIANI M, MAHBUB M, RODINAH. Pengaruh kompos jerami padi terhadap kelarutan Ferro (Fe2+) dan pH tanah serta pertumbuhan tanaman padi ciherang di tanah sulfat masam. Agroekotek View, 2020, 3(1), 55–61.
SWANDA J, HANUM H, MARPAUNG P. Perubahan sifat kimia inceptisol melalui aplikasi bahan humat ekstrak gambut dengan inkubasi dua minggu. Agroekoteknologi, 2015, 3(1), 79–86.
MOHAMMED W, AMAN K, ZEWIDE I. Review on the role of dolomite on soil acidity and soil chemical properties. Journal of Catalyst & Catalysis, 2021, 8(1), 33–41.
REDDY K R, DE LAUNE R D. The biogeochemistry of wetlands; science and applications. New York: CRC Press, 2008.
KHEROAR S, PATRA B C, HALDER D, et al. Comparative efficacy of inorganic and bio-fertilizers on growth and yield of rainfed winter rice (Oryza sativa L.). Current Journal of Applied Science and Technology, 2018, 26(2), 1–13.
SANTAI B E, DANESHIYAM J, AMIR E, et al. Study of organic fertilizers displacement in rice sustainable agriculture. International Journal of Academic Research, 2011, 3(2), 786–791.
SHIVAY Y S, PRASAD R, PALA M. Effect of levels and sources of sulfur on yield, sulfur and nitrogen concentration and uptake and S-use efficiency in Basmati rice. Communications in Soil Science and Plant Analysis, 2014, 45, 2468–2479.
RAMIREZ L M, CLAASSEN N, WERNER H, et al. Effect of phosphorus, potassium and zinc fertilizers on iron toxicity in wetland rice (Oryza sativa L.). Plant and Soil, 2002, 239, 197–206.
SULAEMAN Y, MAFTU’AH E, MUKHLIS M, et al. Tidal rice yield assessment in Central Kalimantan, Indonesia, under different cultural practices. Resources, 2022, 11(12), 116.
SOLTANI S M, HANAFI M M, SAMSURI A W, et al. Rice growth improvement and grains bio-fortification through lime and zinc application in zinc deficit tropical acid sulphate soils. Chemical Speciation & Bioavailability, 2016, 28(1-4), 152–162.
BRAHANE H, MAMO T, TEKA K. Potassium fertilization and its level on wheat (Triticum aestivum) yield in shallow depth soils of northern Ethiopia. Journal of Fertilizers and Pesticides, 2017, 8(2), 182.
KUNDU A, RAHA P, DUBEY A N. Impact of source and method of potassium application on dry matter accumulation and partitioning of potassium in rice (Oryza sativa L.). Journal of Soil Science and Plant Nutrition, 2021, 21, 2252–2263.
SEEDA M A A, ABOU E A A, YASSEN A A, et al. Importance of sulfur and its roles in plant physiology: a review. Current Science International, 2020, 9(2), 198–231.
SAMANTA S, SINGH A, ROYCHOUDHURY A. Involvement of sulfur in the regulation of abiotic stress tolerance in plants. In: ROYCHOUDHURY A, TRIPATHI D K. (eds.) Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives. John Wiley & Sons, 2020: 437–466. https://doi.org/10.1002/9781119552154.ch22
DORUK K. Effect of level and sources of sulphur on yield of rice. International Journal of Chemical Studies, 2020, 8(4), 1687–1689.
Refbacks
- There are currently no refbacks.