Model of Implementation of Integrated Planting Calendar Information System Technology Based on the Intention of Agricultural Extensions in Gorontalo Province
Abstract
This research aims to investigate technology acceptance behavior that seeks to understand the formation of attitudes, intentions, and behavior in accepting information system technology. This research brings something new to expand the theory of technology acceptance, namely the use of an integrated planting calendar information system for voluntary users and at the post-adoption stage. The research objectives are as follows: 1) identify the behavior of agricultural instructors in implementing Integrated Katam SI in Gorontalo Province, 2) describe the intentions of agricultural instructors in implementing the Integrated Katam SI program, 3) analyze the influence of instructors' attitudes, self-efficacy, motivation, perceived usefulness, convenience perceived, and technological anxiety toward agricultural instructors' intentions in implementing Integrated Katam SI, 4) analyze the influence of subjective norms, facilitating conditions, and training on agricultural instructors' intentions in implementing Integrated Katam SI, and 5) formulate a model for implementing Integrated Katam SI based on the intentions of sustainable agriculture instructors. This research was conducted in Gorontalo Province using survey and in-depth interview methods. The research population was ASN and THL-TBPP agricultural instructors in 5 districts/cities in Gorontalo Province, totaling 440 people. The research sample comprised 150 respondents. The number of samples was determined using proportional random sampling by taking subjects from each extension work area determined to be balanced with the number of subjects in each area. The behavior of agricultural instructors in using the Integrated Katam SI shows good knowledge by knowing the service for ± 3 years, and the service that is often used is the estimation of the time and area for planting rice and secondary crops. Extension agents in planning and conducting actual actions show inconsistency, which is caused by the dissatisfaction of some extension agents with the information from SI Katam Terpadu. Agricultural instructors’ intentions are influenced by the instructor’s attitude toward technology, ease of use, and training that supports increasing the instructor’s capacity toward technology.
Keywords: intention; agricultural extension agents; attitude; ease-of-use; training; Gorontalo
DOI:10.62321/issn.1000-1298.2024.02.02
Download Full Text:
PDFReferences
BADAN PUSAT STATISTIK. (2020). Provinsi Gorontalo Dalam Angka 2020. Badan Pusat Statistik Provinsi Gorontalo. https://gorontalo.bps.go.id/publication/2021/02/26/53f37fb4b4b7b19b893638d1/provinsi-gorontalo-dalam-angka-2021.html
SANCHI I, ALHASSAN Y, WANDA P, & MUHAMMAD A. The Use of Computers in Agriculture: A Key to Improved Agricultural Productivity in the 21 st Century: A Review. Global Journal of Environmental Science and Technology, 2022, 10(2): 001–006.
AHUJA L, ANDALES A, MA L, & SASEENDRAN S. Whole-system integration and modeling essential to agricultural science and technology for the 21st century. Journal of Crop Improvement, 2007, 19(1–2): 73–103.
ABUMHADI N, TODOROVSKA E, ASSENOV B, et al. Agricultural research in 21st century: Challenges facing the food security under the impacts of climate change. Bulgarian Journal of Agricultural Science, 2012, 18(6): 801–818.
XIA J, & LU T-J. Bridging the digital divide for rural communities: The case of China. Telecommunications Policy, 2008, 32(9–10): 686–696.
UPADHYAYA, L, BURMAN, R, SANGEETHA, V, et al. Digital inclusion: Strategies to bridge digital divide in farming community. Journal of Agricultural Science and Technology, 2019, 21(5): 1079–1089.
MSUYA C P, ANNOR-FREMPONG F K, MAGHENI M N, et al. The role of agricultural extension in Africa’s development, the importance of extension workers and the need for change. International Journal of Agricultural Extension, 2017, 5(1): 51–58.
AL-ZAHRANI K, ALDOSARI F, BAIG M, et al. Assessing the competencies and training needs of agricultural extension workers in Saudi Arabia. Journal of Agricultural Science and Technology, 2018, 19(1): 33-46.
BURGOON M, NEWTON D A, & BIRK T S. A theory of belief, attitude, intention, and behavior extended to the domain of corrective advertising. Annals of the International Communication Association, 1992, 15(1): 263–286.
DOUGLASS R B. Review of Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research, by M. Fishbein & I. Ajzen. Philosophy & Rhetoric, 1977, 10(2): 130–132. http://www.jstor.org/stable/40237022
DAVIS R A. Social structure, belief, attitude, intention, and behavior: A partial test of Liska’s revisions. Social Psychology Quarterly, 1985, 48(1): 89–93. https://psycnet.apa.org/doi/10.2307/3033786
FISHBEIN M, & AJZEN I. Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley, 1975.
JOHARI S, & JHA K N. Interrelationship among belief, intention, attitude, behavior, and performance of construction workers. Journal of Management in Engineering, 2020, 36(6): 04020081.
AJZEN I. The theory of planned behavior. Organizational Behavior and Human Decision Processes, 1991, 50(2): 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
TUKIDI. Karakter Curah Hujan di Indonesia. Jurnal Geografi, 2010, 7(2): 136–145.
SOLIMUN, FERNANDES A A R, & NURJANNAH. Metode Statistika Multivariat Pemodelan Persamaan Struktural (SEM) Pendekatan WarpPLS. UB Press, 2017.
SIDHARTA I, & SIDH R. Pengukuran Persepsi Manfaat Dan Persepsi Kemudahan Terhadap Sikap Serta Dampaknya Atas Penggunaan Ulang Online Shopping Pada E-Commerce. Coumputech & Bisnis, 2014, 8(2): 92–100.
HERYANI I. Perilaku penggunaan Internet Banking sebagai alat transaksi finansial. Institut Pertanian Bogor, 2019.
VIJAYASARATHY L R. Predicting consumer intentions to use on-line shopping: The case for an augmented technology acceptance model. Information & Management, 2004, 41: 747–762.
SATRIA P A, & DEWI P U. Faktor-Faktor yang Mempengaruhi Kinerja Sistem Informasi Akuntansi: Studi Kasus Pada Koperasi Simpan Pinjam Di Kabupaten Gianyar. Jurnal Ilmiah Akuntansi & Bisnis, 2019, 4(1). http://dx.doi.org/10.38043/jiab.v4i1.2148
HANGGONO A A, HANDAYANI S R, & SUSILO H. Analisis Atas Praktek Tam (Technology Acceptance Model) Dalam Mendukung Bisnis Online Dengan Memanfaatkan Jejaring Sosial Instagram. Administrasi Bisnis, 2015, 26(1): 1-9.
PRIYAMBADA B, KUSYANTI A, & HERLAMBANG A D. Analisis penerimaan SIDJIP menggunakan Technology Acceptance Model pada KPP Pratama Mojokerto. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2018, 2(03): 1036–1044.
JEDDAWI M. Analisis penggunaan aplikasi uang elektronik dengan Unified Theory of Acceptance and Use of Technology 2. Institut Pertanian Bogor, 2019.
YUSTINA N L F M, & BARIDWAN Z. Determinan Minat Keprilakuan Pengguna E-Samsat di Kota Denpasar dengan Pendekatan UTAUT. E-Jurnal Akuntansi, 2023, 33(3): 815–829.
SUN Y, & GAO F. An investigation of the influence of intrinsic motivation on students’ intention to use mobile devices in language learning. Educational Technology Research and Development, 2020, 68: 1181-1198. https://doi.org/10.1007/s11423-019-09733-9
FIDDIN, F. F., & ARIEF M. Pengaruh Computer Anxiety, Computer Attitude, Dan Computer Self Efficacy, Kondisi Yang Memfasilitasi Pemakai, Dan Faktor Sosial Terhadap Minat Mahasiswa Komputerisasi Akuntansi Menggunakan Software Akuntansi. Jurnal Akuntansi Dan Keuangan, 2022, 1(1): 86–94. https://doi.org/10.54259/akua.v1i1.182
WIDAYANTI R. KAJIAN POLA PENATAAN RUANG TERBUKA HIJAU SEBAGAI IMPLEMENTASI PROGRAM PENGEMBANGAN KOTA HIJAU DI KABUPATEN BINTAN. UG Journal, 2019, 13(11): 34-43.
JANNAH G N, KARTIKA, & ARIF A. Analisis Faktor Yang Mempengaruhi Penerimaan Unej Digital Repository Dengan Menggunakan Technology Acceptance Model. Ekonomi Bisnis Dan Akuntansi, 2015, 2(1): 6–12.
AL-AZZAM A F. Evaluating the antecedents of online consumer purchasing behavior: an empirical study based on theory of planned behavior. International Journal of Economics, Commerce and Management, 2014, 2(4): 1-18.
TAYLOR S, & TODD P A. Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research, 1995, 6(2): 144–176.
GURUNG, A. Empirical Investigation of the Relationship of Privacy, Security and Trust with Behavioral Intention to Transact in ECommerce. PhD Thesis. The University of Texas at Arlington, 2006.
VELARDE. Determinants of online purchasing behavior: An empirical investigation using an extension of the Theory of Planned Behavior. Aarhus University.
RAMDHANI B, RACHMAWATI I, & PRABOWO F. Pengaruh Adopsi Teknologi Layanan Uang Elektronik Telkomsel Cash Menggunakan Pendekatan Utaut2. e-Proceedings of Management, 2017, 4(1): 53–61.
KRANTHI A K, & AHMED K A A. Determinants of smartwatch adoption among IT professionals – An extended UTAUT2 model for smartwatch enterprise. International Journal Enterprise Network Management, 2018, 9(3/4): 294–315. https://doi.org/10.1504/IJENM.2018.094669
PUTRI N K R D, & SUARDIKHA I M S. Penerapan Model UTAUT 2 Untuk Menjelaskan Niat Dan Perilaku Penggunaan E-Money di Kota Denpasar. E-Jurnal Akuntansi, 2019, 30(2): 540–555. https://doi.org/10.24843/EJA.2020.v30.i02.p20
MADAN K, & YADAV R. Behavioural intentions to adopt mobile wallets: A developing country’s perspective. Journal of Indian Business Research, 2016, 8: 1–23.
Refbacks
- There are currently no refbacks.