Diversity of the Ground Cover Crop Nephrolepis Biserrata in Oil Palm Plantations on Various Soil Types

Fadri T. Sibarani, Akhmad R. Saidy, Bambang J. Priatmadi, Bambang Fredrickus Langai, Sukarman, Septa Primananda, Rinjani A. Sinaga, Abdullah A. Kurniawan, Cindy Diah Ayu Fitriana, Suwardi

Abstract

Ground cover crops play an important role in maintaining the ecological balance in oil palm plantations. Nephrolepis biserrata, as a cover crop species, has not been extensively studied, especially in relation to soil type and vegetation level. This study aimed to analyze the distribution and dominance of Nephrolepis biserrata in oil palm plantations on various soil and vegetation levels. This quantitative research was conducted in oil palm plantations in Central Kalimantan Province using a survey method with purposive sampling. Nine treatment combinations of three soil types (Histosols, Ultisols, and Spodosols) and three vegetation levels (low, medium, and high) were tested on 81 test plots. Data analysis includes diversity index (Ĥ), uniformity index (E), dominance index (C), importance value index (INP), and relative dominance (DR). The results of the research show that N. biserrata has good adaptability and dominance as a ground cover crop in the producing crop (TM) phase in oil palm plantations, especially on Spodosol-type soils. Nephrolepis exaltata and Nephrolepis biserrata showed the highest INP in Ultisols (76.65%; 7.64%), Spodosols (48.03%; 82.75%), and Histosols (61.34%; 23.98%). There are no cover crop species that dominate exclusively in all soil types (0.078-0.185). Ultisols have high cover crop diversity (3,107), whereas Spodosols (2,130) and Histosols (2,595) have medium diversity. Ageratum conyzoides (15.08%) and Paspalum dilatatum (10.06%) also had significant INP in all soil types. Different soil conditions influence the number of cover crop vegetation species and communities in oil palm plantations.

 

Keywords: Nephrolepis biserrata; ground cover crop; oil palm plantations; soil type

 

DOI:10.62321/issn.1000-1298.2024.04.03

 


Download Full Text:

PDF


References


MAXISELLY Y, SYAHRIAN H, ARIYANTI M. Modifikasi Teknik Budidaya Tanaman Kina Belum Menghasilkan Di Wilayah Marginal Indonesia. Deepublish, 2020.

PURBA DW, DALIMUNTHE BA, SEPTARIANI DN, et al. Sistem Pertanian Terpadu: Pertanian Masa Depan. Yayasan Kita Menulis, 2022.

CHAPAGAIN T, LEE EA, RAIZADA MN. The potential of multi-species mixtures to diversify cover crop benefits. Sustainability (Switzerland), 12(5), 2058, 2020. https://doi.org/10.3390/su12052058

PERMATASARI P, ZAIN KM, RUSDIYANA E, et al. Pertanian Organik. Yayasan Kita Menulis, 2021.

KARYATI K, SARMINAH S. Teknologi Konservasi Tanah dan Air. Mulawarman University Press, 2018.

MAHRUP M, KUSNARTHA IGM, PADUSUNG P, et al. Inovasi Dalam Pemberdayaan Petani Lahan Tegalan Guna Kesetaraan Ekonomi. Jurnal PEPADU, 1(2), 235–244, 2020.

ALI NBM, KARIM MFA, SAHARIZAN N, et al. Weeds diversity in oil palm plantation at Segamat, Johor. IOP Conference Series: Earth and Environmental Science, 756(1), 012034, 2021. https://doi.org/10.1088/1755-1315/756/1/012034

JIANG Y, ZANG R, LETCHER SG, et al. Associations between plant composition/diversity and the abiotic environment across six vegetation types in a biodiversity hotspot of Hainan Island, China. Plant and Soil, 403(1–2), 21–35, 2016. https://doi.org/10.1007/s11104-015-2723-y

ASBUR Y, YAHYAR S, MURTILAKSONO KS, SUTARTA E. Study of Asystasia gangetica (L.) Anderson Utilization as Cover Crop under Mature Oil Palm with Different Ages. International Journal of Sciences: Basic and Applied Research, 19, 137–148, 2015.

HANUM C, RAUF A, FAZRIN DA, HABIBI AR. Nitrogen, Phosphor, and Potassium Level in Soil and Oil Palm Tree at various Composition of plant species mixtures grown. IOP Conference Series: Earth and Environmental Science, 41, 012008, 2016. https://doi.org/10.1088/1755-1315/41/1/012008

SARJONO A, GUNTORO D, SUPIJATNO S. The Role of Biomulch Arachis pintoi In Increasing Soil Infiltration Rate on Sloping Land of Oil Palm Plantation. Journal of Tropical Crop Science, 5(3), 89–95, 2018. https://doi.org/10.29244/jtcs.5.3.89-95

SUSANTI ED, HERA N, ZAM SI. Perbandingan Vegetasi Gulma pada Perkebunan Kelapa Sawit (Elaeis guineensis Jacq.) Menghasilkan dan Belum Menghasilkan di Lahan Gambut. Jurnal Agroteknologi, 12(1), 17, 2021. https://doi.org/10.24014/ja.v12i1.12762

MULU M, NGALU R, LAZAR FL. Pola Tanam Tumpang Sari di Desa Satar Punda Barat, Kabupaten Manggarai Timur, Provinsi Nusa Tenggara Timur. Agrokreatif: Jurnal Ilmiah Pengabdian Kepada Masyarakat, 6(1), 72–78, 2020.

SUMINAH S. Model Pemberdayaan Masyarakat Dalam Rangka Konservasi Lahan Rawan Bencana Longsor Di Kecamatan Jatiyoso Kabupaten Karanganyar. Jurnal Ilmu-Ilmu Pertanian, 7(1), 13, 2020.

ARIYANTI M, YAHYA S, MURTILAKSONO K, et al. Water Balance in Oil Palm Plantation with Ridge Terrace and Nephrolepis biserrata as Cover Crop. Journal of Tropical Crop Science, 3(2), 35–55, 2016. https://doi.org/10.29244/jtcs.3.2.35-55

KUSTYANTI T, HORNE, P. The effect of Asystasia on the Growth of Young Rubber in Polybags. In Small Ruminant Collaborative Research Support Program Sungal Putih, Indonesia. Annual Report 1991-1992, 60-69, 1992. https://pdf.usaid.gov/pdf_docs/PDABG454.pdf

MAULIDIA A, SEDAYU A, PANCA SAKTI D, et al. Keanekaragamantanaman Paku (Pteridophyta) Di Jalur Ciwalen Taman Nasional Gunung Gede Pangrango, Jawa Barat. Biosfer: Jurnal Biologi Dan Pendidikan Biologi, 4(1), 41-48, 2019. https://doi.org/10.23969/biosfer.v4i1.660

ADELEYE MA, AKINSOJI A, ADEONIPEKUN PA. (2016). A Survey of Vascular Epiphytes of Oil Palms (Elaeis guineensis Jacq.) in Lekki Conservation Centre, Lagos, Nigeria. FUW Trends in Science & Technology Journal, 2(1A), 74-78, 2017.

SATRIAWAN H, FUADY Z. Teknologi Konservasi Tanah dan Air. Deepublish, 2014.

AWMPUIA L, LALRUATSANGA H. Enumeration of Plant Species Inhabiting Oil Palm Trees (Elaeis-guineensis) at Zawlpui Plantation Site, Serchhip District, Mizoram. Science & Technology Journal, 9(1), 32–35, 2021. https://doi.org/10.22232/stj.2021.09.01.06

MANAN, FA, MAMAT, DD, SAMAD AA, et al. Heavy metal accumulation and antioxidant properties of Nephrolepis biserrata growing in heavy metal-contaminated soil. Global NEST Journal, 17(3), 544–554, 2015. https://doi.org/10.30955/gnj.001463

SAMEDANI B, JURAIMI AS, ANWAR MP, et al. Competitive Interaction of Axonopus compressus and Asystasia gangetica under Contrasting Sunlight Intensity. The Scientific World Journal, 2013, 1–8, 2013. https://doi.org/10.1155/2013/308646

SATRIAWAN H, FUADY Z, ERNAWITA. The potential of nephrolepis biserrata fern as ground cover vegetation in oil palm plantation. Biodiversitas, 22(11), 4808–4817, 2021. https://doi.org/10.13057/biodiv/d221113

ARIYANTI M, YAHYA S, MURTILAKSONO K, et al. Study of the Growth of Nephrolepis biserrata Kuntze and Its Utilization as Cover Crop Under Mature Oil Palm Plantation. International Journal of Sciences: Basic and Applied Research, 15, 325–333, 2015.

GUNAWAN S, BUDIASTUTI MTS, SUTRISNO J, WIRIANATA H. Effects of Organic Materials and Rainfall Intensity on the Productivity of Oil Palm Grown under Sandy Soil Condition. International Journal on Advanced Science, Engineering and Information Technology, 10(1), 356-361, 2020. https://doi.org/10.18517/ijaseit.10.1.11001

HASIBUAN SAF, RAIS RN, RAHMAN A, et al. Laporan PKL (Praktek Kerja Lapangan) PT. Saudara Sejati Luhur (Asian Agri) Unit Kebun Pulau Maria, 2020.

SUPRIYANTO, PURWANTO, POROMARTO SH, SUPYANI. The effect of indigenous vegetations on the biological control of oil palm basal stem rot (BSR) disease caused by Ganoderma in peatlands. IOP Conference Series: Earth and Environmental Science, 1016(1), 012059, 2022. https://doi.org/10.1088/1755-1315/1016/1/012059

ANCHETA MH, QUIMADO MO, TIBURAN Jr CT, et al. Copper and arsenic accumulation of Pityrogramma calomelanos, Nephrolepis biserrata, and Cynodon dactylon in Cu- and Au- mine tailings. Journal of Degraded and Mining Lands Management, 7(3), 2201–2208, 2020. https://doi.org/10.15243/jdmlm.2020.073.2201

BRICE K, YVES-ALAIN B. Phytochemical and Biological Investigation of Nephrolepis biserrata, a Fern Variety From Côte D’Ivoire. American Journal of PharmTech Research, 11(4), 20-36, 2021. https://doi.org/10.46624/ajptr.2021.v11.i4.003

AZHAR A, TAWAKKAL MI, SARI A, et al. Tree Diversity Enhance Species Richness of Beneficial Insect in Experimental Biodiversity Enrichment in Oil Palm Plantation. International Journal of Oil Palm, 5(2), 39–49, 2022. https://doi.org/10.35876/ijop.v5i2.82

MEXZÓN R. Algunas pautas de manejo de las malezas para incrementar los insectos benéficos en el cultivo de palma aceitera (Elaeis guineensis Jacquin). Agronomía Mesoamericana, 8(2), 21-32, 2016. https://doi.org/10.15517/am.v8i2.24653

ARMANDO R, HINDAYANA D, PRIYAMBODO S. The effect of habitat condition of oil palm (Elaeis guineensis Jacq.) to arthropods and rat infestation. IOP Conference Series: Earth and Environmental Science, 974(1), 012103, 2022. https://doi.org/10.1088/1755-1315/974/1/012103

EL MOUJAHID L, LE ROUX X, MICHALET S, et al. Effect of plant diversity on the diversity of soil organic compounds. PLOS ONE, 12(2), e0170494, 2017. https://doi.org/10.1371/journal.pone.0170494

SONG Y, SONG C, SHI F, et al. Linking plant community composition with the soil C pool, N availability and enzyme activity in boreal peatlands of Northeast China. Applied Soil Ecology, 140, 144–154, 2019. https://doi.org/10.1016/j.apsoil.2019.04.019

EISENHAUER N, LANOUE A, STRECKER T, et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports, 7(1), 44641, 2017. https://doi.org/10.1038/srep44641

BENNETT JA, KOCH AM, FORSYTHE J, et al. Resistance of soil biota and plant growth to disturbance increases with plant diversity. Ecology Letters, 23(1), 119–128, 2020. https://doi.org/10.1111/ele.13408

SARAGIH WS, PURBA E, TAMPUBOLON K. Identification and Analysis of Weed Vegetation as Ganoderma Presence Marker on Oil Palm Plantation. Jurnal Natural, 18(3), 135–140, 2018. https://doi.org/10.24815/jn.v18i3.11595

SATRIAWAN H, FUADY Z. Short Communication: Analysis of weed vegetation in immature and mature oil palm plantations. Biodiversitas Journal of Biological Diversity, 20(11), 3292-3298, 2019. https://doi.org/10.13057/biodiv/d201123

ISWAHYUDI H, FACHRURAZI M. Inventory of Weeds in Oil Palm Plants (Elaeis guineensis Jacq.) in Balai Pengawasan dan Sertifikasi Benih Perkebunan. Agrisains: Jurnal Budidaya Tanaman Perkebunan Politeknik Hasnur, 6(02), 47–51, 2021. https://doi.org/10.46365/agrs.v6i02.409

HODAC̆ L, ULUM FB, OPFERMANN N, et al. Population Genetic Structure and Reproductive Strategy of the Introduced Grass Centotheca lappacea in Tropical Land-Use Systems in Sumatra. PLOS ONE, 11(1), e0147633, 2016. https://doi.org/10.1371/journal.pone.0147633

SALEH A, DIBISONO MY, GEA SU. Keragaman Gulma pada Tanaman Kelapa Sawit (Elaies guineensis Jacq.) Belum Menghasilkan dan Sudah Menghasilkan di Kebun Rambutan PT. Perkebunan Nusantara III. Jurnal Agro Estate, 4(1), 1-10, 2020. https://doi.org/10.47199/jae.v4i1.131

SUSANTI Y, FEBRINOVA R. Inventarisasi Gulma pada Lahan Perkebunan Tanaman Kelapa Sawit (Elaeis guineensis Jacq.) di Kecamatan Tambusai Utara Kabupaten Rokan Hulu. Jurnal Sungkai, 3(2), 18–24, 2015

ADRIADI A, CHAIRUL, SOLFIYENI. Analisis Vegetasi Gulma pada Perkebunan Kelapa Sawit (Elais quineensis jacq.) di Kilangan, Muaro Bulian, Batang Hari. Jurnal BiologiUniversitas Andalas, 1(2), 108–115, 2012.

ESSANDOH P, ARMAH F, ODOI J, et al. Floristic Composition and Abundance of Weeds in An Oil Palm Plantation in Ghana. Journal of Agricultural and Biological Science, 6, 20–31, 2011.

ALI MA, IQBAL MS, AHMAD KS, et al. Plant species diversity assessment and monitoring in catchment areas of River Chenab, Punjab, Pakistan. PLoS ONE, 17(8), e0272654, 2022. https://doi.org/10.1371/journal.pone.0272654

MA M, ZHU Y, WEI Y, ZHAO N. Soil Nutrient and Vegetation Diversity Patterns of Alpine Wetlands on the Qinghai-Tibetan Plateau. Sustainability, 13(11), 6221, 2021. https://doi.org/10.3390/su13116221

MISWARTI, ISHAK A, WULANDARI WA, et al. Effect of weeds management toward understorey species diversity and soil fertility under oil palm plantation. E3S Web of Conferences, 306, 05013, 2021. https://doi.org/10.1051/e3sconf/202130605013

LANGE M, EISENHAUER N, SIERRA CA, et al. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6(1), 6707. 2015. https://doi.org/10.1038/ncomms7707

ISMAIL B, HALIMSHAH S, AHMAD W, YUSOFF N. Allelopathic potential of the leaf and seed of Pueraria javanica Benth. On the germination and growth of three selected weed species. Sains Malaysiana, 45, 517–521, 2016.

CARRON MP, AURIAC Q, SNOECK D, et al. Spatial heterogeneity of soil quality around mature oil palms receiving mineral fertilization. European Journal of Soil Biology, 66, 24–31, 2015. https://doi.org/10.1016/j.ejsobi.2014.11.005

BUTTS TR, SAMPLES CA, FRANCA LX, et al. Spray droplet size and carrier volume effect on dicamba and glufosinate efficacy. Pest Management Science, 74(9), 2020–2029, 2018. https://doi.org/10.1002/ps.4913

DONG S, SHA W, SU X, et al. The impacts of geographic, soil and climatic factors on plant diversity, biomass and their relationships of the alpine dry ecosystems: Cases from the Aerjin Mountain Nature Reserve, China. Ecological Engineering, 127, 170–177, 2019. https://doi.org/10.1016/j.ecoleng.2018.10.027


Refbacks

  • There are currently no refbacks.